
An Abstraction Algorithm for Genetics-based
Reinforcement Learning

Will Browne
University of Reading

Berkshire
RG6 6AY, UK

 + 44 (0)118 378 6705

w.n.browne@rdg.ac.uk

Dan Scott
University of Reading

Berkshire
RG6 6AY, UK

 + 44 (0)118 966 6893

siu01ds@rdg.ac.uk

ABSTRACT
Abstraction is a higher order cognitive ability that facilitates the
production of rules that are independent of their associations.
Experience from real-world data-mining has shown the need for
such higher level rules. The game of Connect 4 is both multistep
and complex, so standard Q-learning and Learning Classifier
Systems perform poorly. The introduction of a novel Abstraction
algorithm into an LCS is shown to improve performance in the
evolution of playing strategies.

Categories and Subject Descriptors
F.2.2 Nonnumerical Algorithms and Problems

General Terms
Algorithms, Performance.

Keywords
Learning Classifier Systems, Genetics-Based Machine Learning,
Abstraction.

1. INTRODUCTION
During the application of the Genetics-Based Machine Learning
technique of Learning Classifier Systems (LCS) to data-mine rules
in the steel industry, Browne noted that many rules had similar
patterns [1]. For example, there were many rules of the type 'if
side guide setting < width, then poor quality product' due to
different product widths. This resulted in a rule-base that was
unnecessarily hard to interpret and slow to learn. A method is
sought to generate higher order (abstracted) rules from the learnt
base rules (see figure 1).

Abstraction may be defined as 'The act or process of separating in
thought, of considering a thing independently of its associations'
[2]. The implications of abstraction on learning have been
considered theoretically for artificial intelligence and cognitive
psychology [3]. Practical considerations relating to Reinforcement
Learning have focused on Temporal Abstraction, often utilizing

decision processes [4]. Here discrete abstraction for data-mining
applications, using genetic-based processes, is considered.

The process of abstraction can be likened to Information
Processing Theory [5] (a branch of Learning Theory), which
suggests that humans have the ability to recognize patterns in data
and chunk these patterns into meaningful units. The individual
patterns do not necessarily remain in a memory store due to the
holistic nature of the individual patterns. However, the chunks of
meaningful information remain, and become a basic element of all
subsequent analyses.

The Abstraction algorithm needs to perform this “chunking”, for
the individual patterns created by a learning system. The learning
system selected was the XCS implementation of the Learning
Classifier System concept as it has been shown to produce
accurate and maximally general rule sets [6]. The LCS concept
was derived from work by Holland [7] on developing artificial
central nervous [cognitive] systems. Much past work has focused
on improving learning performance, but recent work has revisited
its cognitive abilities [8]. LCS use evolutionary computation to
produce maximally general compact production rules, thus are a
suitable technique to form base rules.

Abstracted rule(s):
e.g. 'if side guide setting < width, then poor quality product'

Base rules:
e.g. if side guide setting = 80, width = 82, then poor quality product'
 if side guide setting = 78, width = 84, then poor quality product'

Abstraction
Algorithm checks for patterns in
the base rules and creates an
abstracted rule for the pattern

Hypothesising
Algorithm uses abstracted rules
as templates to create base rules
for the learning system to test

Raw data: conditions : action
e.g. ‘side guide setting’, ‘width’,…, : 'product quality'
 78 81 poor
 80 84 poor
 80 79 good ….

Learning System

Figure 1 - Abstraction from data to higher order rules.

The first step in developing the Abstraction algorithm is to select
a suitable test domain. Games, such as Chess or Connect 4, offer a
useful environment in which to test an algorithm's ability to find

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1875

patterns within the data set and, more importantly, perform
abstractions. Games are useful as they offer an environment that is
well studied (meaning performance is easy to gauge), competitive,
turn based (meaning time is not an important factor) and finite
(although very large in most cases).

The goal of this project was to create an Abstraction algorithm
that would generate rules for and play the game of Connect 4, due
to this domain’s scale, multi-step and non-deterministic
properties.

2. BACKGROUND
Connect 4 is a turn based between two players, each trying to be
the first to achieve four counters in a row (horizontally, vertically
or diagonally). The game takes place on a 7 * 6 board; players
take it in turns to drop one of their counters into one of the seven
columns. The counters will drop to the lowest free space in the
column. Play continues until the board is full or one player gets
four in a row, see figure 2. Optimum strategies exist [9], so the
problem is both known and bounded.

Figure 2 – Connect 4 board, black horizontal win

A client-server program of Connect 4 was written in Java, as Java
Applets can easily be viewed on the internet, allowing a website
to be constructed for this project [please visit:
http://sip189a.rdg.ac.uk]. The client-server architecture of the
game allows any combination of human/computer players to
compete; meaning Co-Evolution between two different learning
algorithms could be investigated using this program.

The client side of the program included seven expert systems,
allowing human players to play against the computer as well as
offering a benchmark against which to test various learning
algorithms. The expert systems were hierarchical in nature, each
one building on the last to become a more worthy adversary. The
most basic level simply played the game randomly, whilst the
most advanced mode had two moves look-ahead to play either
winning or blocking moves. Human players have difficulty
beating this mode unless they set up board states that give
multiple win opportunities, see figure 3.

Figure 3 - Multiple win situation for black

Therefore, the most common of these situations were added to the
expert system as 'filters' and image matching used - as analogous
computer vision filtering - to improve performance. A filter,
example shown in figure 4, is placed on a playable space and its
score calculated by summing the associated squares (100 own
counter, 0 space, -100 opponent's counter). The highest modulus
score is played with a preference for positive moves for tied
scores. Human players responded by using more disparate double
win situations.

Figure 4 - Filter: Grey score box placed on playable space.

A Q-Learning [10] approach to the problem is implemented in
order to provide benchmark learning performance. Two different
approaches were taken to training the Q-Learning system. The
first progressively trained the algorithm against increasingly hard
opponents, whilst the second trained for the same number of
games, but against the hardest opponent from the outset.

The Abstraction algorithm requires rules in order to perform
abstraction. A well-known LCS, XCS [6], was implemented to
create rules and provide a second benchmark learning
performance.

3. LEARNING CLASSIFIER SYSTEM
This section outlines the architecture of XCS, including the
required adjustments for the Connect 4 domain, so that it may
train against the pre-coded expert system. A standard XCS [6,
available from www-illigal.ge.uiuc.edu/] was implemented with
the Abstraction algorithm (see section 6.2). Following these
results tests were also conducted with a modified version of XCS
(mXCS) that had its reinforcement learning component adjusted
to complement the Abstraction algorithm (see section 6.3).

3.1 Setup and Board Representation
The board representation formed an important part of the LCS.
Each space on the board could be one of three possible states, red,
yellow or empty, however it was considered useful to further split

1876

down the empty squares into two categories, playable and
unplayable (unplayable squares are above the playable squares
and become playable in the future as the game progresses).
A two character representation for each space was chosen, leading
to an 84 character long string representing the board (running
from top row to bottom row). The encoding for a red was chosen
as “11” and a yellow was “10”, a playable space was “00” whilst
an unplayable was “01”. Mutation may only generalize by
replacing specific characters with a “#”; these hashes can stand for
either a “1” or a “0”. Therefore mutation can give rise to the
following useful representations: “1#” means a space with a
counter in (either red or yellow) and “0#” shows an empty space
(either playable or unplayable) or simply “##” which could be
anything. The mutation can also give rise to the following
representations: “#0” either a playable or a yellow and “#1” either
an unplayable or a red, however the usefulness of these mutations
is questionable.

3.2 Gameplay and Rewards
LCS must decide upon the best move to play at its turn without
knowing where its opponent will play in the subsequent turn. An
untrained LCS will often play randomly as it attempts to learn the
best moves to play. After each move has been played by the
opponent, the LCS attempts to match the state of the board to its
rules. Attached to each of these classifiers are three pieces of
information: the move that should be played, the win score (the
higher this is the more likely a win will occur) and the accuracy
score (accuracy of the win score). Win scores of less than 50
indicate a predicted loss, greater than 50 is a projected win.
After matching, an action must be selected through explore,
exploit or coverage. Exploring (which is most likely to happen)
uses a weighted roulette wheel based on accuracy to choose a
move. Exploiting chooses the move that has the greatest win score
and is used for performance evaluation. Coverage generates a new
rule by simply selecting a random move to play for the current
board position.
The end of each game results in a win, loss or draw. In the event
of a draw nothing happens and the game is simply reset. However,
in either of the other two cases a reward/punishment system takes
place. All the rules that were used in playing the game are
rewarded/punished based upon their win score. If the game was
won, the win score always gets increased by 2. If the game was
lost, then the win score is always decreased by 2. The accuracy is
altered based upon the current win score. For example, if the
game is lost and the win score is below 50 (correctly suggesting a
loss), the accuracy is increased by 2, whereas if the win score is
above 50 (incorrectly suggesting a win), the accuracy is decreased
by 2. In the LCS reward system the accuracy of losing rules is
increased if they correctly label themselves as such. Eventually
well fitted rules reach either 100 win score and 100 accuracy
(absolute guaranteed victory) or 0 win score and 100 accuracy
(absolute guaranteed loss).

3.3 LCS Genetic Algorithm
The LCS is trained for 100 games before the genetic algorithm
(GA) is run. This allows rules the opportunity to be tested and to
establish themselves.

3.3.1 Crossover
A two point crossover was used for this GA. Two rules were
chosen randomly and the two crossover points were also chosen
randomly. Large number of rules can be created that are invalid as
the state that they represent could never occur on the board.
Originally the crossover was performed horizontally across the
board as this was simplest to implement. However, this produced
invalid states that contained 'floating counters'. Due to the rules of
the game these floating counters cannot occur as the counter has
to drop to the lowermost space they can occupy. Figure 5
demonstrates an example of a crossover between two perfectly
valid states that leads to an invalid state.

Figure 5 - Crossover leading to invalid state with floating

counters
The crossover maybe performed vertically, using columns rather
than rows (as shown by Figure 6). This eliminates the problem of
“floating counters” but the problem of counter imbalance still
occurs, where one color of counter out numbers the other. Due to
the turn based nature of the game, a maximum imbalance of one
more counter to the first player is possible. Imbalanced states are
simply removed.

At the end of each generation (when the GA is run), 500
crossovers are performed in order to introduce new rules to the
population. Due to the problem of counter imbalance occurring,
not all of these 500 crossovers resulted in the insertion of a new
rule into the population. This led to slight fluctuations in the
population size, but had no effect of the performance of the LCS.

1877

Figure 6 - Crossover leading to invalid state with counter

imbalance

3.3.2 Mutation
The GA also includes a mutation algorithm that enables the LCS
to perform generalisation. The mutation algorithm creates new
states by factoring in #’s into already existing states. The chance
of the mutation algorithm running on any one state was set to 1 in
100. The mutation algorithm causes far fewer invalidity problems
than the crossover algorithm.

3.3.3 Duplications
If a rule is duplicated, then the duplicate is deleted and the
numerosity [6] of the original rule is incremented. If a rule with a
numerosity of greater than one is selected for deletion, it simply
gets its numerosity decremented rather than the rule being deleted.

3.4 XCS features
XCS has a number of features that when implemented together
distinguish it from other versions of the LCS concept. The
important features include:

1. Fitness of rules based on accuracy of prediction, not
strength.

2. Niche based rule discovering, instead of panmictic

3. Mutation generalizes only, specialization through
coverage and crossover.

4. Deletion is panmictic, but considers action set size,
which assists in negating the effects of an imbalance in
class presentation rates from the data.

5. Michigan based, where the population consists of
individual rules.

6. Designed to evolve a complete and accurate payoff map,
not just the positive payoff state-action pairs.

7. Explore and exploit trials alternate.

The XCS was setup with the following parameters. N, the
maximum population size was set at 5000. This was allowed to
drift above 5000 due to coverage, but was always cut back to

5000 whenever the GA was run. Originally a population size of
1000 was chosen, however this gave rise to a far too competitive
environment, with over half the population being deleted each
time the GA was run, just to maintain the 1000 limit. With so
many rules being deleted, ‘good’ rules did not get a chance to
establish themselves. A learning rate, β, was not used in this XCS
as, for reasons discussed in section 6.3, simple reinforcement
learning was found to give the best performance.

θGA the GA threshold was set to 1000 games, the GA would
run after a set of 1000 games had been played. χ, the crossover
possibility was set to generate 500 random crossovers every time
the GA is run. Of the 500 crossovers generated, approximately
100 in every GA run passed validity checks (see section 3.3) and
were inputted into the new population. µ, the mutation rate was
set at a 1% chance to receive a mutation and then a 2% that each
character in that rule would receive a mutation. Deletion
probabilities (θdel) were based upon tournament selection of rule
fitness and the number of rules deleted was chosen to keep the
population size at 5000.

The standard reinforcement update for LCS is the Widrow-
Hoff update [8], which is a recency weighted average. A Q-
learning type update is used within the LCS technique for
multistep decision problems [11].

4. ABSTRACTION ALGORITHM
The Abstraction algorithm was designed to work upon the rules
generated by the LCS. Abstraction is independent of the data
itself. Other methods, such as the standard coverage operator [7],
depend directly on the data. Crossover and mutation depend
indirectly on the data as they require the fitness of the
hypothesized rules, which is dependent on the data. Abstraction is
a higher order method, as once good rules have been discovered;
it could function without the raw data being available.

The abstraction attempts to find patterns in the rules that
performed best within the LCS. Having found a pattern common
to two or more of the LCS rules, the Abstraction algorithm is to
generate a new rule in the abstracted population based solely on
this pattern. This allows the pattern to be matched when it occurs
in any state, not just the specific rules that exist within the LCS.

4.1 Rule Selection
Not all of the rules generated by the LCS are worthwhile and
therefore the Abstraction algorithm should not be run upon all of
the rules within the LCS. The domain is noiseless, so the
parameters chosen to govern the testing of rules for abstraction
were the conditions that a rule must have a 100% win score and a
100% accuracy. Therefore the rules abstracted by the Abstraction
algorithms should only be rules that lead to winning situations.

4.2 Windowing Function
The main mechanism that allowed the abstraction to perform was
a windowing function that was used in rule generation as well as
rule selection (when it came to choosing an abstracted rule to
play). The windowing function acted as a filter that was passed
over the ‘good’ rules generated by the LCS. This filter would
compare two rules at a time for similarities that could lead to
abstracted rules.

1878

The windowing function worked in all directions on the board,
horizontally, vertically and in both diagonal directions. The
window size was set to 4 space/counters (8 characters in terms of
the board representation). However code allowed for a window
size of between 4 and 6 spaces/counter (8 – 12 characters in terms
of the board representation), any greater than a window size of 6
and the vertical and diagonal windows no longer fit on the board.

4.3 Abstracted Rule Generation and
Limitations
Any match that is found is turned into an abstracted rule, each
rule had 8 characters (assuming a window size of 4) to represent
the pattern occurring on the board. Each rule also had to be
assigned a move to play whenever that rule was used. The move
assigned was always chosen from one of the playable spaces
within the pattern. An example rule is '10,10,10,00:11’, which
translate to 'if three red counters in a row and payable space in the
next position, then play in the next position'. All rules entered the
abstracted population with a win and accuracy of 50.
Several limitations were placed upon what was considered a valid
match for the Abstraction algorithm, including ignoring all
unplayable areas. A valid pattern had to contain at least one
playable space and no more than 2 playable spaces. Patterns
without a playable space are useless because rules as they offer
nowhere for a move to be played. The second limitation placed
upon the abstraction process was that a valid rule could have a
maximum of one unplayable space. This helps limit the generation
of “empty” rules. Figure 7 shows an example of two windowing
functions finding a match and generating an abstracted rule.

Figure 7 - Example of Abstraction Algorithms generating a
new rule.

4.4 Abstraction Genetic Algorithm
As with the LCS, the Abstraction algorithm also had a GA that
was run upon the population to generate new rules. It had a single
point crossover and mutation; however it had no deletion
algorithm as all the abstraction rules were kept. Duplication was
prevented through a duplication check that was made each time a
rule was to be inserted into the rule-base, including those
generated by crossover and mutation.

5. LCS WITH ABSTRACTION
A LCS can function alone, but the Abstraction algorithm cannot
function without a rule-base to work on; hence it needs an LCS to
function alongside it. How the two are combined and work
together is detailed in this section.
When the LCS with abstraction needs to play a move, the system
searches the board for any matches within its abstracted rule set.
The board is searched by passing the windowing function over the
board (horizontally vertically and diagonally). A rule is then
chosen out of all matched rules. When exploiting the rule with the
best win score is chosen, whilst when exploring a roulette wheel
based upon accuracy is used.
The chosen abstracted rule also has a move associated with it,
however unlike the LCS rules the move does not relate directly to
the board. With a window size of 4 counters the rule could occur
anywhere on the board, horizontally, vertically or diagonally.
Therefore an extra calculation is required to translate the
abstracted rules’ move into the corresponding move on the actual
board.
If no abstracted rule is found after the initial search of the board
state, then control of playing the move is handed to the LCS that
chooses a move in the same way as described above in Section
3.2.

6. RESULTS
The following section details the results found during the trials of
the LCS and Abstraction algorithm. Initial trials investigated the
difficulty of the problem domain with standard Q-learning and
XCS techniques. Preliminary tests of the Abstraction algorithm
with XCS were followed by tests of the Abstraction algorithm
with a modified XCS (mXCS) where the reinforcement learning
complemented the abstraction. The use of abstraction as the
training progressed was investigated. During these tests, each
system was trained for 20,000 games against an opponent that
played randomly. Finally, the robustness of the Abstraction
algorithm to changes in the domain was tested by increasing the
difficulty of the opponent.

6.1 Q-Learning and standard XCS
The Q-Learning Algorithm performed well in the initial 20,000
games (see figure 8), achieving an average win percentage of
69%. However, there was no progress in the wins as the 20,000
games progressed, with the win percentage always remaining at
around 69%. This exhaustive search nature of the algorithm meant
it took several weeks of computation on a 3GHz PC. Ideally, each
test would have been repeated 10 times and the average results
taken, but this was impractical due to time constraints.

The XCS performance trend was similar, with an average win
percentage of 62% reached quickly, but no further improvements.
Analysis of the rules showed that they had become trapped in
local optima. A few specific strategies had been learnt, such as
initially trying to build a column of counters in a given column.
However, if this column happened to be blocked, then the overall
strategy failed.

1879

Figure 8 - Graphs of win percentages for the basic algorithms

Solid Line - Q-Learning Algorithm, circle- Standard XCS

6.2 Standard XCS, plus Abstraction
When the Abstraction algorithm was included in the standard
XCS the performance did not improve, see figure 9. This was
because the XCS did not find sufficiently accurate rules for the
Abstraction algorithm to be triggered.
The random nature of the opponent meant that a sometimes good
strategy, such as build a column of counters in row one, was
occasionally blocked. The prediction is updated by the Widrow-
Hoff delta rule, which severely penalizes an incorrect prediction.
Thus the accuracy of prediction never reaches a high stable level.
Adjusting the learning rate (β) within the range 0.1-0.6 did not
improve the performance. Reducing the threshold of what the
Abstract algorithm considered as accurate to 85% accuracy of
prediction also did not improve performance.

Figure 9 - Graphs of win percentages: Solid Line – XCS ββββ =
0.2, circle- XCS with abstraction ββββ = 0.2.

6.3 mXCS with and without Abstraction
The Widrow-Hoff delta rule was replaced by a simple
reinforcement learning update, as outlined in section 3.2, where
recency had a much reduced effect. This enabled mXCS to
produce rules considered accurate enough to be abstracted.
Although the rules were similar to those produced by XCS, the
learning was more gradual, which prevented good rules from
being replaced due to low accuracy of prediction.

Figure 10 shows the mXCS algorithm without abstraction, which
reaches a similar performance level to standard XCS after 20,000
trials. Instead of taking under 2000 iterations to reach the final
level, it takes over 6000 trials (see figure 11).

Figure 10 - Graphs of win percentages for mXCS: Solid Line -

mXCS Algorithm, circle - mXCS with Abstraction.
When the Abstraction algorithm is added it produces a similar
trend until 6000 trials. A significant improvement is noted after
8000 trials as the performance increases to 90%. This compares
favorably with both Q-learning (69%) and standard XCS (62%),
see figure 11.

Figure 11 - Graphs of win percentages for the 3 algorithms

Solid Line - Q-Learning Algorithm, square - XCS Algorithm,
circle - mXCS with Abstraction.

During testing the rules that the Abstraction algorithm produced
were observed and an interesting pattern arose in the order in
which the abstractions were discovered. In early generations no
abstracted rules are found, whilst mXCS attempts to establish a
set of good rules that have a win and accuracy of 100. The first
abstracted rules found are not rules for a direct win (i.e. 3 in a row
and play in the fourth). The first rules that emerge are those rules
that cause a 3 in a row situation with an empty playable fourth
space.
Learning to form 3 in a row followed by learning to form 4 in a
row is a novel example of incremental learning. Intuitively, it
could be expected that learning to form 4 in a row, which is closer
to obtaining the reward, would be achieved first. Incremental
learning is hypothesized to be an important cognitive ability [8].

1880

Whilst there is no direct feedback from the abstraction rule-base
to the mXCS rule-base, it is possible to see them evolve together
and there is a definite dependency between the two. With the
introduction of abstracted rules to make 3 in a row, this is likely to
occur far more often (as abstracted rules take preference over
mXCS rules). With 3 in a row occurring more often, mXCS has
more opportunities to conceive of rules that directly give a win.
Therefore with more winning rules the Abstraction algorithm is
more likely to come up with abstracted rules that lead to a direct
win, greatly bolstering the winning ability of the algorithm.

6.4 Effect of Abstraction
The use of abstracted rules as training progresses can be
monitored, see figure 12. As outlined in section 5, the combined
system always plays a matching abstracted rule in preference to a
matching base rule. After 8000 trials the base rules were accurate
enough to allow abstraction to start. Once abstraction had started,
the performance of the system continued to improve beyond that
of standard XCS and Q-learning (see figure 11). A further 8000
trials occur where the system uses a combination of both base and
abstracted rules. After this period the system just uses abstracted
rules in its decision-making. Small improvements in performance
occurred due to the action of the genetic algorithm in the
abstracted population.

Figure 12 - Graph of percentage base rules versus abstracted

rules (solid line) as training progresses (circle line).
The random opponent still defeats the system in 10% of the games
when it chances upon a good strategy. As there are multiple
positions for good strategy is to occur in, the system is rarely
presented with them, which makes them difficult to learn. In order
to determine the robustness and scalability of the techniques the
difficulty of the opponent was increased.

6.5 Robustness of the systems
The opponent could now block a potentially winning three in a
row state. The system has to learn to create multiple win
situations, see section 2. This is a significantly harder problem,
especially as the opponent could win either randomly or in the act
of blocking, which halts the game.
Figure 13 shows that all algorithms perform poorly as all win
percentages are under 20%. If no good base rules are found, then
the Abstraction algorithm will not start.

Figure 13 - Win percentages against blocking opponent. Solid
Line - Q-Learning Algorithm, square - XCS, circle - mXCS

with Abstraction.
Instead of training from the start with the harder opponent, it was
decided to train first with the simple opponent and then switch to
the harder opponent, see figure 14. After the switch, standard
XCS performed better than the Q-Learning Algorithm, achieving
a win percentage of 15%, it should be noted that the performance
was less than the Q-Learning algorithm during the first 20000
games. Analysis of the Q-Learning algorithm testing showed that
progressive training, from the easiest to the hardest opponent,
caused it to get stuck in a local optimum with a win percentage of
only 11%. The generality and adaptability of the standard XCS
algorithm enables it to switch opponent without penalty.

The performance of the Abstraction algorithm was significant.
Not only did it outperform standard XCS and Q-learning (53%,
compared with 15% and 11% respectively), but it performed
significantly better then when it had been trained only on the
harder opponent (53% compared with 19%). This is a good
example of incremental learning, where it is necessary to build up
the complexity of the problem domain.

Figure 14 - Change in opponent at 20x103 games played (Solid

Line - Q-Learning Algorithm, square - XCS, circle - mXCS
with Abstraction).

7. DISCUSSION
Abstraction may appear a trivial task for humans and the positive
results from this work intuitive, but abstraction has not been
routinely used in genetics-based reinforcement learning.

1881

One reason is that the time that each iteration requires is an
important consideration and abstraction increases the time for
each iteration. Typically XCS takes 20 minutes to play 1000
games (and remains constant), mXCS with abstraction takes 20
minutes for 100 games (although this can vary greatly depending
on the choice of parameters) and the Q-Learning algorithm ranges
from 5 minutes for 1000 games initially and 90 minutes for 1000
games after 100,000 games training. However, given a fixed
amount of time to train all three algorithms mXCS with
abstraction would perform the best, once the initial base rules
were found.
The Q-Learning algorithm has to visit every single state at least
once in order to come up with a successful playing strategy.
Whilst the Q-Learning system would ultimately play a very good
game, weeks of computation failed to achieve the level of success
the Abstraction algorithm had in a very short space of time (hours
rather than weeks). Although better Q-learning algorithms
(including generalization capabilities) exist [12] this choice of
benchmark algorithm showed the scale of the problem, which is
difficult to calculate.
The improvement in abstraction performance from standard XCS
to the modified XCS was due to using simpler reinforcement
learning. The Widrow-Hoff delta rule converges much faster,
which for simpler domains that can be solved easily is beneficial.
However, slower and more graceful learning may be required in
complex domains when interacting with higher level features.
The abstracted rules allow the system to play on states as a whole,
including those that have not been encountered, where these states
contain a known pattern. This is useful in data-mining, but with
the inherent dangers of interpolation and extrapolation. The
abstracted rule-base is also compact as an abstracted rule covers
more states than either a generalized LCS rule or a Q-learning
state. Unique states may still be covered by the base rules.
Abstraction has been shown to give an improvement in a
complex, but structured domain. It is anticipated that the
Abstraction algorithm would be suited to other domains
containing repeated patterns.

8. FUTURE WORK
Instead of the current linear filters in the Abstraction algorithm, it
is possible to vary the size and shape in order to represent and
hopefully discover advantageous multi-win situations.
The abstraction method is static and determined a priori, which is
successful for this structured domain. The next stage is to evolve
the abstracted rules and/or filters thus reducing the searching time.
A process termed 'hypothesizing' is proposed (see figure 1) where
the abstracted rules form a template in order to produce new rules
for the base population, with the worth of the abstracted rule
being determined by the success of their hypothesized rules.

9. CONCLUSION
A novel Abstraction algorithm has been developed to successfully
improve the performance of a genetics-based machine learning
technique in a complex multi-step problem. It is hoped that this
algorithm will help to fulfill the intended use of the LCS
technique as a test bed for artificial cognitive processes.

10. ACKNOWLEDGMENTS
Our thanks to the Nuffield Foundation for their support through
grant NUF-URB04.

11. REFERENCES
[1] Browne, W. N. L., The development of an industrial learning

classifier system for data-mining in a steel hot strip mill. In
Bull, L. Applications of Learning Classifier Systems.
Springer, Berlin, 2004, 223-259.

[2] Oxford English dictionary, http://www.oed.com/.
[3] Thornton. C., Quantitative abstraction theory. In Artificial

intelligence and the simulation of behaviour. 1, 3 (2003)
281-290.

[4] Sutton, R. S., Precup, D., and Singh, S. Between MDPs and
Semi-MDPs: a framework for temporal abstraction in
reinforcement learning. Artificial intelligence. 112, 1-2
(1999), 181-211.

[5] Miller, G.A. The magical number seven, plus or minus two;
Some limits on our capacity for processing information.
Psychological Review, 63, (1956), 81-97.

[6] Butz, M., and Wilson, S. W. An algorithmic description of
XCS. In Soft Computing: a fusion of foundations,
methodologies and applications, 6 (2002), 162-170.

[7] Holland, J. H. adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan press, 1975.

[8] Butz, M., Rule-base evolutionary online learning systems:
learning bounds, classification and prediction. PhD thesis
University of Illinois, Illinois, 2004.

[9] Allis, V. A Knowledge Based Approach of Connect 4.
Masters Thesis, Vrije Universiteit, Netherlands, 1988.

[10] Watkins, C. J. C. H. Learning from Delayed Rewards. PhD
thesis, King's College, Cambridge, England, 1989.

[11] Lanzi, P-L., Learning classifier systems from a reinforcement
learning perspective. In Soft Computing: a fusion of
foundations, methodologies and applications, 6 (2002), 162-
170.

[12] Sutton, R. S., and Barto, A. G. Reinforcement learning: An
introduction. Cambridge, MA: MIT Press, 1998.

1882

