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ABSTRACT 
Abstraction is a higher order cognitive ability that facilitates the 
production of rules that are independent of their associations. 
Experience from real-world data-mining has shown the need for 
such higher level rules. The game of Connect 4 is both multistep 
and complex, so standard Q-learning and Learning Classifier 
Systems perform poorly. The introduction of a novel Abstraction 
algorithm into an LCS is shown to improve performance in the 
evolution of playing strategies. 

Categories and Subject Descriptors 
F.2.2 Nonnumerical Algorithms and Problems 

General Terms 
Algorithms, Performance. 

Keywords 
Learning Classifier Systems, Genetics-Based Machine Learning, 
Abstraction. 

1. INTRODUCTION 
During the application of the Genetics-Based Machine Learning 
technique of Learning Classifier Systems (LCS) to data-mine rules 
in the steel industry, Browne noted that many rules had similar 
patterns [1]. For example, there were many rules of the type 'if 
side guide setting < width, then poor quality product' due to 
different product widths. This resulted in a rule-base that was 
unnecessarily hard to interpret and slow to learn. A method is 
sought to generate higher order (abstracted) rules from the learnt 
base rules (see figure 1). 

Abstraction may be defined as 'The act or process of separating in 
thought, of considering a thing independently of its associations' 
[2]. The implications of abstraction on learning have been 
considered theoretically for artificial intelligence and cognitive 
psychology [3]. Practical considerations relating to Reinforcement 
Learning have focused on Temporal Abstraction, often utilizing  

 
 
decision processes [4]. Here discrete abstraction for data-mining 
applications, using genetic-based processes, is considered. 

The process of abstraction can be likened to Information 
Processing Theory [5] (a branch of Learning Theory), which 
suggests that humans have the ability to recognize patterns in data 
and chunk these patterns into meaningful units. The individual 
patterns do not necessarily remain in a memory store due to the 
holistic nature of the individual patterns. However, the chunks of 
meaningful information remain, and become a basic element of all 
subsequent analyses.  

The Abstraction algorithm needs to perform this “chunking”, for 
the individual patterns created by a learning system. The learning 
system selected was the XCS implementation of the Learning 
Classifier System concept as it has been shown to produce 
accurate and maximally general rule sets [6]. The LCS concept 
was derived from work by Holland [7] on developing artificial 
central nervous [cognitive] systems. Much past work has focused 
on improving learning performance, but recent work has revisited 
its cognitive abilities [8]. LCS use evolutionary computation to 
produce maximally general compact production rules, thus are a 
suitable technique to form base rules. 

Abstracted rule(s): 
e.g. 'if side guide setting < width, then poor quality product'

Base rules: 
e.g. if side guide setting = 80, width = 82, then poor quality product' 
 if side guide setting = 78, width = 84, then poor quality product' 

Abstraction 
Algorithm checks for patterns in 
the base rules and creates an 
abstracted rule for the pattern

Hypothesising 
Algorithm uses abstracted rules 
as templates to create base rules 
for the learning system to test

Raw data: conditions   : action 
e.g. ‘side guide setting’, ‘width’,…,  : 'product quality' 
  78  81   poor 
  80  84   poor  
  80  79   good …. 

Learning System 

 
Figure 1 - Abstraction from data to higher order rules. 

The first step in developing the Abstraction algorithm is to select 
a suitable test domain. Games, such as Chess or Connect 4, offer a 
useful environment in which to test an algorithm's ability to find  
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patterns within the data set and, more importantly, perform 
abstractions. Games are useful as they offer an environment that is 
well studied (meaning performance is easy to gauge), competitive, 
turn based (meaning time is not an important factor) and finite 
(although very large in most cases). 

The goal of this project was to create an Abstraction algorithm 
that would generate rules for and play the game of Connect 4, due 
to this domain’s scale, multi-step and non-deterministic 
properties. 

2. BACKGROUND 
Connect 4 is a turn based between two players, each trying to be 
the first to achieve four counters in a row (horizontally, vertically 
or diagonally). The game takes place on a 7 * 6 board; players 
take it in turns to drop one of their counters into one of the seven 
columns. The counters will drop to the lowest free space in the 
column. Play continues until the board is full or one player gets 
four in a row, see figure 2. Optimum strategies exist [9], so the 
problem is both known and bounded. 

 

 
Figure 2 – Connect 4 board, black horizontal win 

 
A client-server program of Connect 4 was written in Java, as Java 
Applets can easily be viewed on the internet, allowing a website 
to be constructed for this project [please visit: 
http://sip189a.rdg.ac.uk]. The client-server architecture of the 
game allows any combination of human/computer players to 
compete; meaning Co-Evolution between two different learning 
algorithms could be investigated using this program. 

The client side of the program included seven expert systems, 
allowing human players to play against the computer as well as 
offering a benchmark against which to test various learning 
algorithms. The expert systems were hierarchical in nature, each 
one building on the last to become a more worthy adversary. The 
most basic level simply played the game randomly, whilst the 
most advanced mode had two moves look-ahead to play either 
winning or blocking moves. Human players have difficulty 
beating this mode unless they set up board states that give 
multiple win opportunities, see figure 3. 

 
Figure 3 - Multiple win situation for black 

Therefore, the most common of these situations were added to the 
expert system as 'filters' and image matching used - as analogous 
computer vision filtering - to improve performance. A filter, 
example shown in figure 4, is placed on a playable space and its 
score calculated by summing the associated squares (100 own 
counter, 0 space, -100 opponent's counter). The highest modulus 
score is played with a preference for positive moves for tied 
scores. Human players responded by using more disparate double 
win situations. 

 
Figure 4 - Filter: Grey score box placed on playable space. 

A Q-Learning [10] approach to the problem is implemented in 
order to provide benchmark learning performance. Two different 
approaches were taken to training the Q-Learning system. The 
first progressively trained the algorithm against increasingly hard 
opponents, whilst the second trained for the same number of 
games, but against the hardest opponent from the outset.  

The Abstraction algorithm requires rules in order to perform 
abstraction. A well-known LCS, XCS [6], was implemented to 
create rules and provide a second benchmark learning 
performance. 

3. LEARNING CLASSIFIER SYSTEM 
This section outlines the architecture of XCS, including the 
required adjustments for the Connect 4 domain, so that it may 
train against the pre-coded expert system. A standard XCS [6, 
available from www-illigal.ge.uiuc.edu/] was implemented with 
the Abstraction algorithm (see section 6.2). Following these 
results tests were also conducted with a modified version of XCS 
(mXCS) that had its reinforcement learning component adjusted 
to complement the Abstraction algorithm (see section 6.3). 

3.1 Setup and Board Representation 
The board representation formed an important part of the LCS. 
Each space on the board could be one of three possible states, red, 
yellow or empty, however it was considered useful to further split 

1876



down the empty squares into two categories, playable and 
unplayable (unplayable squares are above the playable squares 
and become playable in the future as the game progresses).  
A two character representation for each space was chosen, leading 
to an 84 character long string representing the board (running 
from top row to bottom row). The encoding for a red was chosen 
as “11” and a yellow was “10”, a playable space was “00” whilst 
an unplayable was “01”. Mutation may only generalize by 
replacing specific characters with a “#”; these hashes can stand for 
either a “1” or a “0”. Therefore mutation can give rise to the 
following useful representations: “1#” means a space with a 
counter in (either red or yellow) and “0#” shows an empty space 
(either playable or unplayable) or simply “##” which could be 
anything. The mutation can also give rise to the following 
representations: “#0” either a playable or a yellow and “#1” either 
an unplayable or a red, however the usefulness of these mutations 
is questionable. 

3.2 Gameplay and Rewards 
LCS must decide upon the best move to play at its turn without 
knowing where its opponent will play in the subsequent turn. An 
untrained LCS will often play randomly as it attempts to learn the 
best moves to play. After each move has been played by the 
opponent, the LCS attempts to match the state of the board to its 
rules. Attached to each of these classifiers are three pieces of 
information: the move that should be played, the win score (the 
higher this is the more likely a win will occur) and the accuracy 
score (accuracy of the win score). Win scores of less than 50 
indicate a predicted loss, greater than 50 is a projected win. 
After matching, an action must be selected through explore, 
exploit or coverage. Exploring (which is most likely to happen) 
uses a weighted roulette wheel based on accuracy to choose a 
move. Exploiting chooses the move that has the greatest win score 
and is used for performance evaluation. Coverage generates a new 
rule by simply selecting a random move to play for the current 
board position.  
The end of each game results in a win, loss or draw. In the event 
of a draw nothing happens and the game is simply reset. However, 
in either of the other two cases a reward/punishment system takes 
place. All the rules that were used in playing the game are 
rewarded/punished based upon their win score. If the game was 
won, the win score always gets increased by 2. If the game was 
lost, then the win score is always decreased by 2. The accuracy is 
altered based upon the current win score. For example, if the 
game is lost and the win score is below 50 (correctly suggesting a 
loss), the accuracy is increased by 2, whereas if the win score is 
above 50 (incorrectly suggesting a win), the accuracy is decreased 
by 2. In the LCS reward system the accuracy of losing rules is 
increased if they correctly label themselves as such. Eventually 
well fitted rules reach either 100 win score and 100 accuracy 
(absolute guaranteed victory) or 0 win score and 100 accuracy 
(absolute guaranteed loss).  

3.3 LCS Genetic Algorithm 
The LCS is trained for 100 games before the genetic algorithm 
(GA) is run. This allows rules the opportunity to be tested and to 
establish themselves.  

3.3.1 Crossover 
A two point crossover was used for this GA. Two rules were 
chosen randomly and the two crossover points were also chosen 
randomly. Large number of rules can be created that are invalid as 
the state that they represent could never occur on the board. 
Originally the crossover was performed horizontally across the 
board as this was simplest to implement. However, this produced 
invalid states that contained 'floating counters'. Due to the rules of 
the game these floating counters cannot occur as the counter has 
to drop to the lowermost space they can occupy. Figure 5 
demonstrates an example of a crossover between two perfectly 
valid states that leads to an invalid state. 

 
Figure 5 - Crossover leading to invalid state with floating 

counters 
The crossover maybe performed vertically, using columns rather 
than rows (as shown by Figure 6). This eliminates the problem of 
“floating counters” but the problem of counter imbalance still 
occurs, where one color of counter out numbers the other. Due to 
the turn based nature of the game, a maximum imbalance of one 
more counter to the first player is possible. Imbalanced states are 
simply removed.  

At the end of each generation (when the GA is run), 500 
crossovers are performed in order to introduce new rules to the 
population. Due to the problem of counter imbalance occurring, 
not all of these 500 crossovers resulted in the insertion of a new 
rule into the population. This led to slight fluctuations in the 
population size, but had no effect of the performance of the LCS. 
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Figure 6 - Crossover leading to invalid state with counter 

imbalance 

3.3.2 Mutation 
The GA also includes a mutation algorithm that enables the LCS 
to perform generalisation. The mutation algorithm creates new 
states by factoring in #’s into already existing states. The chance 
of the mutation algorithm running on any one state was set to 1 in 
100. The mutation algorithm causes far fewer invalidity problems 
than the crossover algorithm. 

3.3.3 Duplications 
If a rule is duplicated, then the duplicate is deleted and the 
numerosity [6] of the original rule is incremented. If a rule with a 
numerosity of greater than one is selected for deletion, it simply 
gets its numerosity decremented rather than the rule being deleted. 

3.4 XCS features  
XCS has a number of features that when implemented together 
distinguish it from other versions of the LCS concept. The 
important features include: 

1. Fitness of rules based on accuracy of prediction, not 
strength. 

2. Niche based rule discovering, instead of panmictic 

3. Mutation generalizes only, specialization through 
coverage and crossover. 

4. Deletion is panmictic, but considers action set size, 
which assists in negating the effects of an imbalance in 
class presentation rates from the data. 

5. Michigan based, where the population consists of 
individual rules. 

6. Designed to evolve a complete and accurate payoff map, 
not just the positive payoff state-action pairs. 

7. Explore and exploit trials alternate. 

The XCS was setup with the following parameters. N, the 
maximum population size was set at 5000. This was allowed to 
drift above 5000 due to coverage, but was always cut back to 

5000 whenever the GA was run. Originally a population size of 
1000 was chosen, however this gave rise to a far too competitive 
environment, with over half the population being deleted each 
time the GA was run, just to maintain the 1000 limit. With so 
many rules being deleted, ‘good’ rules did not get a chance to 
establish themselves. A learning rate, β, was not used in this XCS 
as, for reasons discussed in section 6.3, simple reinforcement 
learning was found to give the best performance. 

θGA the GA threshold was set to 1000 games, the GA would 
run after a set of 1000 games had been played. χ, the crossover 
possibility was set to generate 500 random crossovers every time 
the GA is run. Of the 500 crossovers generated, approximately 
100 in every GA run passed validity checks (see section 3.3) and 
were inputted into the new population. µ, the mutation rate was 
set at a 1% chance to receive a mutation and then a 2% that each 
character in that rule would receive a mutation. Deletion 
probabilities (θdel) were based upon tournament selection of rule 
fitness and the number of rules deleted was chosen to keep the 
population size at 5000. 

The standard reinforcement update for LCS is the Widrow-
Hoff update [8], which is a recency weighted average. A Q-
learning type update is used within the LCS technique for 
multistep decision problems [11]. 

4. ABSTRACTION ALGORITHM 
The Abstraction algorithm was designed to work upon the rules 
generated by the LCS. Abstraction is independent of the data 
itself. Other methods, such as the standard coverage operator [7], 
depend directly on the data. Crossover and mutation depend 
indirectly on the data as they require the fitness of the 
hypothesized rules, which is dependent on the data. Abstraction is 
a higher order method, as once good rules have been discovered; 
it could function without the raw data being available. 

The abstraction attempts to find patterns in the rules that 
performed best within the LCS. Having found a pattern common 
to two or more of the LCS rules, the Abstraction algorithm is to 
generate a new rule in the abstracted population based solely on 
this pattern. This allows the pattern to be matched when it occurs 
in any state, not just the specific rules that exist within the LCS.  

4.1 Rule Selection 
Not all of the rules generated by the LCS are worthwhile and 
therefore the Abstraction algorithm should not be run upon all of 
the rules within the LCS. The domain is noiseless, so the 
parameters chosen to govern the testing of rules for abstraction 
were the conditions that a rule must have a 100% win score and a 
100% accuracy. Therefore the rules abstracted by the Abstraction 
algorithms should only be rules that lead to winning situations. 

4.2 Windowing Function 
The main mechanism that allowed the abstraction to perform was 
a windowing function that was used in rule generation as well as 
rule selection (when it came to choosing an abstracted rule to 
play). The windowing function acted as a filter that was passed 
over the ‘good’ rules generated by the LCS. This filter would 
compare two rules at a time for similarities that could lead to 
abstracted rules.  
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The windowing function worked in all directions on the board, 
horizontally, vertically and in both diagonal directions. The 
window size was set to 4 space/counters (8 characters in terms of 
the board representation). However code allowed for a window 
size of between 4 and 6 spaces/counter (8 – 12 characters in terms 
of the board representation), any greater than a window size of 6 
and the vertical and diagonal windows no longer fit on the board.  

4.3 Abstracted Rule Generation and 
Limitations 
Any match that is found is turned into an abstracted rule, each 
rule had 8 characters (assuming a window size of 4) to represent 
the pattern occurring on the board. Each rule also had to be 
assigned a move to play whenever that rule was used. The move 
assigned was always chosen from one of the playable spaces 
within the pattern. An example rule is '10,10,10,00:11’, which 
translate to 'if three red counters in a row and payable space in the 
next position, then play in the next position'. All rules entered the 
abstracted population with a win and accuracy of 50. 
Several limitations were placed upon what was considered a valid 
match for the Abstraction algorithm, including ignoring all 
unplayable areas. A valid pattern had to contain at least one 
playable space and no more than 2 playable spaces. Patterns 
without a playable space are useless because rules as they offer 
nowhere for a move to be played. The second limitation placed 
upon the abstraction process was that a valid rule could have a 
maximum of one unplayable space. This helps limit the generation 
of “empty” rules. Figure 7 shows an example of two windowing 
functions finding a match and generating an abstracted rule. 

Figure 7 - Example of Abstraction Algorithms generating a 
new rule. 

4.4 Abstraction Genetic Algorithm 
As with the LCS, the Abstraction algorithm also had a GA that 
was run upon the population to generate new rules. It had a single 
point crossover and mutation; however it had no deletion 
algorithm as all the abstraction rules were kept. Duplication was 
prevented through a duplication check that was made each time a 
rule was to be inserted into the rule-base, including those 
generated by crossover and mutation.  

5. LCS WITH ABSTRACTION 
A LCS can function alone, but the Abstraction algorithm cannot 
function without a rule-base to work on; hence it needs an LCS to 
function alongside it. How the two are combined and work 
together is detailed in this section. 
When the LCS with abstraction needs to play a move, the system 
searches the board for any matches within its abstracted rule set. 
The board is searched by passing the windowing function over the 
board (horizontally vertically and diagonally). A rule is then 
chosen out of all matched rules. When exploiting the rule with the 
best win score is chosen, whilst when exploring a roulette wheel 
based upon accuracy is used. 
The chosen abstracted rule also has a move associated with it, 
however unlike the LCS rules the move does not relate directly to 
the board. With a window size of 4 counters the rule could occur 
anywhere on the board, horizontally, vertically or diagonally. 
Therefore an extra calculation is required to translate the 
abstracted rules’ move into the corresponding move on the actual 
board. 
If no abstracted rule is found after the initial search of the board 
state, then control of playing the move is handed to the LCS that 
chooses a move in the same way as described above in Section 
3.2.  

6. RESULTS 
The following section details the results found during the trials of 
the LCS and Abstraction algorithm. Initial trials investigated the 
difficulty of the problem domain with standard Q-learning and 
XCS techniques. Preliminary tests of the Abstraction algorithm 
with XCS were followed by tests of the Abstraction algorithm 
with a modified XCS (mXCS) where the reinforcement learning 
complemented the abstraction. The use of abstraction as the 
training progressed was investigated. During these tests, each 
system was trained for 20,000 games against an opponent that 
played randomly. Finally, the robustness of the Abstraction 
algorithm to changes in the domain was tested by increasing the 
difficulty of the opponent.  

6.1 Q-Learning and standard XCS  
The Q-Learning Algorithm performed well in the initial 20,000 
games (see figure 8), achieving an average win percentage of 
69%. However, there was no progress in the wins as the 20,000 
games progressed, with the win percentage always remaining at 
around 69%. This exhaustive search nature of the algorithm meant 
it took several weeks of computation on a 3GHz PC. Ideally, each 
test would have been repeated 10 times and the average results 
taken, but this was impractical due to time constraints. 

The XCS performance trend was similar, with an average win 
percentage of 62% reached quickly, but no further improvements. 
Analysis of the rules showed that they had become trapped in 
local optima. A few specific strategies had been learnt, such as 
initially trying to build a column of counters in a given column. 
However, if this column happened to be blocked, then the overall 
strategy failed. 
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Figure 8 - Graphs of win percentages for the basic algorithms 

Solid Line - Q-Learning Algorithm, circle- Standard XCS 

6.2 Standard XCS, plus Abstraction 
When the Abstraction algorithm was included in the standard 
XCS the performance did not improve, see figure 9. This was 
because the XCS did not find sufficiently accurate rules for the 
Abstraction algorithm to be triggered. 
The random nature of the opponent meant that a sometimes good 
strategy, such as build a column of counters in row one, was 
occasionally blocked. The prediction is updated by the Widrow-
Hoff delta rule, which severely penalizes an incorrect prediction. 
Thus the accuracy of prediction never reaches a high stable level. 
Adjusting the learning rate (β) within the range 0.1-0.6 did not 
improve the performance. Reducing the threshold of what the 
Abstract algorithm considered as accurate to 85% accuracy of 
prediction also did not improve performance. 

Figure 9 - Graphs of win percentages: Solid Line – XCS ββββ = 
0.2, circle- XCS with abstraction ββββ = 0.2. 

6.3 mXCS with and without Abstraction 
The Widrow-Hoff delta rule was replaced by a simple 
reinforcement learning update, as outlined in section 3.2, where 
recency had a much reduced effect. This enabled mXCS to 
produce rules considered accurate enough to be abstracted. 
Although the rules were similar to those produced by XCS, the 
learning was more gradual, which prevented good rules from 
being replaced due to low accuracy of prediction.  

Figure 10 shows the mXCS algorithm without abstraction, which 
reaches a similar performance level to standard XCS after 20,000 
trials. Instead of taking under 2000 iterations to reach the final 
level, it takes over 6000 trials (see figure 11).  

 
Figure 10 - Graphs of win percentages for mXCS: Solid Line - 

mXCS Algorithm, circle - mXCS with Abstraction.  
When the Abstraction algorithm is added it produces a similar 
trend until 6000 trials. A significant improvement is noted after 
8000 trials as the performance increases to 90%. This compares 
favorably with both Q-learning (69%) and standard XCS (62%), 
see figure 11. 

 
Figure 11 - Graphs of win percentages for the 3 algorithms 

Solid Line - Q-Learning Algorithm, square - XCS Algorithm, 
circle - mXCS with Abstraction.  

During testing the rules that the Abstraction algorithm produced 
were observed and an interesting pattern arose in the order in 
which the abstractions were discovered. In early generations no 
abstracted rules are found, whilst mXCS attempts to establish a 
set of good rules that have a win and accuracy of 100. The first 
abstracted rules found are not rules for a direct win (i.e. 3 in a row 
and play in the fourth). The first rules that emerge are those rules 
that cause a 3 in a row situation with an empty playable fourth 
space.  
Learning to form 3 in a row followed by learning to form 4 in a 
row is a novel example of incremental learning. Intuitively, it 
could be expected that learning to form 4 in a row, which is closer 
to obtaining the reward, would be achieved first. Incremental 
learning is hypothesized to be an important cognitive ability [8]. 
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Whilst there is no direct feedback from the abstraction rule-base 
to the mXCS rule-base, it is possible to see them evolve together 
and there is a definite dependency between the two. With the 
introduction of abstracted rules to make 3 in a row, this is likely to 
occur far more often (as abstracted rules take preference over 
mXCS rules). With 3 in a row occurring more often, mXCS has 
more opportunities to conceive of rules that directly give a win. 
Therefore with more winning rules the Abstraction algorithm is 
more likely to come up with abstracted rules that lead to a direct 
win, greatly bolstering the winning ability of the algorithm.  

6.4 Effect of Abstraction 
The use of abstracted rules as training progresses can be 
monitored, see figure 12. As outlined in section 5, the combined 
system always plays a matching abstracted rule in preference to a 
matching base rule. After 8000 trials the base rules were accurate 
enough to allow abstraction to start. Once abstraction had started, 
the performance of the system continued to improve beyond that 
of standard XCS and Q-learning (see figure 11). A further 8000 
trials occur where the system uses a combination of both base and 
abstracted rules. After this period the system just uses abstracted 
rules in its decision-making. Small improvements in performance 
occurred due to the action of the genetic algorithm in the 
abstracted population. 

 
Figure 12 - Graph of percentage base rules versus abstracted 

rules (solid line) as training progresses (circle line).  
The random opponent still defeats the system in 10% of the games 
when it chances upon a good strategy. As there are multiple 
positions for good strategy is to occur in, the system is rarely 
presented with them, which makes them difficult to learn. In order 
to determine the robustness and scalability of the techniques the 
difficulty of the opponent was increased. 

6.5 Robustness of the systems  
The opponent could now block a potentially winning three in a 
row state. The system has to learn to create multiple win 
situations, see section 2. This is a significantly harder problem, 
especially as the opponent could win either randomly or in the act 
of blocking, which halts the game. 
Figure 13 shows that all algorithms perform poorly as all win 
percentages are under 20%. If no good base rules are found, then 
the Abstraction algorithm will not start. 

 
Figure 13 - Win percentages against blocking opponent. Solid 
Line - Q-Learning Algorithm, square - XCS, circle - mXCS 

with Abstraction.  
Instead of training from the start with the harder opponent, it was 
decided to train first with the simple opponent and then switch to 
the harder opponent, see figure 14. After the switch, standard 
XCS performed better than the Q-Learning Algorithm, achieving 
a win percentage of 15%, it should be noted that the performance 
was less than the Q-Learning algorithm during the first 20000 
games. Analysis of the Q-Learning algorithm testing showed that 
progressive training, from the easiest to the hardest opponent, 
caused it to get stuck in a local optimum with a win percentage of 
only 11%. The generality and adaptability of the standard XCS 
algorithm enables it to switch opponent without penalty.  

The performance of the Abstraction algorithm was significant. 
Not only did it outperform standard XCS and Q-learning (53%, 
compared with 15% and 11% respectively), but it performed 
significantly better then when it had been trained only on the 
harder opponent (53% compared with 19%). This is a good 
example of incremental learning, where it is necessary to build up 
the complexity of the problem domain. 

 
Figure 14 - Change in opponent at 20x103 games played (Solid 

Line - Q-Learning Algorithm, square - XCS, circle - mXCS 
with Abstraction). 

7. DISCUSSION 
Abstraction may appear a trivial task for humans and the positive 
results from this work intuitive, but abstraction has not been 
routinely used in genetics-based reinforcement learning. 
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One reason is that the time that each iteration requires is an 
important consideration and abstraction increases the time for 
each iteration. Typically XCS takes 20 minutes to play 1000 
games (and remains constant), mXCS with abstraction takes 20 
minutes for 100 games (although this can vary greatly depending 
on the choice of parameters) and the Q-Learning algorithm ranges 
from 5 minutes for 1000 games initially and 90 minutes for 1000 
games after 100,000 games training. However, given a fixed 
amount of time to train all three algorithms mXCS with 
abstraction would perform the best, once the initial base rules 
were found. 
The Q-Learning algorithm has to visit every single state at least 
once in order to come up with a successful playing strategy. 
Whilst the Q-Learning system would ultimately play a very good 
game, weeks of computation failed to achieve the level of success 
the Abstraction algorithm had in a very short space of time (hours 
rather than weeks). Although better Q-learning algorithms 
(including generalization capabilities) exist [12] this choice of 
benchmark algorithm showed the scale of the problem, which is 
difficult to calculate. 
The improvement in abstraction performance from standard XCS 
to the modified XCS was due to using simpler reinforcement 
learning. The Widrow-Hoff delta rule converges much faster, 
which for simpler domains that can be solved easily is beneficial. 
However, slower and more graceful learning may be required in 
complex domains when interacting with higher level features. 
The abstracted rules allow the system to play on states as a whole, 
including those that have not been encountered, where these states 
contain a known pattern. This is useful in data-mining, but with 
the inherent dangers of interpolation and extrapolation. The 
abstracted rule-base is also compact as an abstracted rule covers 
more states than either a generalized LCS rule or a Q-learning 
state. Unique states may still be covered by the base rules. 
Abstraction has been shown to give an improvement in a 
complex, but structured domain. It is anticipated that the 
Abstraction algorithm would be suited to other domains 
containing repeated patterns. 

8. FUTURE WORK 
Instead of the current linear filters in the Abstraction algorithm, it 
is possible to vary the size and shape in order to represent and 
hopefully discover advantageous multi-win situations.  
The abstraction method is static and determined a priori, which is 
successful for this structured domain. The next stage is to evolve 
the abstracted rules and/or filters thus reducing the searching time.  
A process termed 'hypothesizing' is proposed (see figure 1) where 
the abstracted rules form a template in order to produce new rules 
for the base population, with the worth of the abstracted rule 
being determined by the success of their hypothesized rules. 

9. CONCLUSION 
A novel Abstraction algorithm has been developed to successfully 
improve the performance of a genetics-based machine learning 
technique in a complex multi-step problem. It is hoped that this 
algorithm will help to fulfill the intended use of the LCS 
technique as a test bed for artificial cognitive processes. 
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